20 research outputs found

    Electronic procurement: dealing with supplier adoption

    Get PDF
    E-procurement systems make purchasing activities more effective in terms of both time and cost. However over the past years there is evidence that some of the expected benefits have not been achieved. Among several appointed causes, supplier‟s adherence to such platforms has been regarded as one. The focus of this research is in supplier adoption of e-Procurement. Such a study is important in order to better address the issues actually faced by suppliers within e-Procurement. We have conducted a questionnaire-based survey to 721 Portuguese companies and performed an empirical analysis of the results. The findings from this work provide empirical evidence that the supplier perceived benefits and business partner pressures are positively related to e-Procurement adoption while some barriers like implementation costs have the opposite effect. The main critical success factors on e-Procurement adoption are also presented.Os sistemas de e-Procurement permitem melhorias significativas no tempo e custo associados aos processos de compra. No entanto, nos últimos anos existe evidência de que alguns dos benefícios esperados não têm sido alcançados. Entre as várias causas apontadas, a falta de adesão dos fornecedores a esse tipo de plataformas foi apontada como uma. O foco desta pesquisa está na adopção dos fornecedores ao e-Procurement, mais especificamente nos factores que levam a sua adesão. Foi realizado um questionário a 721 empresas Portuguesas e os dados obtidos analisados. Os resultados deste trabalho fornecem evidências de que os benefícios percebidos pelos fornecedores e as pressões dos parceiros de negócios estão positivamente relacionados com a intenção de adopção, enquanto algumas barreiras, como custos de implementação têm o efeito oposto. Os principais factores críticos de sucesso na adesão ao e-Procurement são também apresentados

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Task-aware interrupt controller: priority space unification in real-time systems

    No full text
    In the development of real-time systems, predictability is often hindered by technological factors which break the timing abstractions offered by real time operating systems (RTOSs); namely, the priority space separation between threads and interrupts induces the rate-monotonic problem. Software approaches have tackled this issue, attempting to unify the priority space with varying degrees of success. We present a hardware approach to the problem: unifying the priority space at the interrupt handling subsystem, predictability is greatly enhanced with minimum software modifications. Our solution provides the interrupt controller with awareness of the currently running task's priority making the solution independent of the used operating system. We show how our approach is minimally intrusive at hardware architecture level and provides benefits beyond the capabilities of previous approaches. Our technique shows a 0.05% run-time overhead if no interrupts occur, and run-time reduction proportional to interrupt rate for rates higher than 5 per s, for a interrupt workload around 0.07 ms.This work was supported by the FCT within the Project Scope:PEst-OE/EEI/UI0319/2014. The work of T. Gomes was supported by the FCT, Fundação para a Ciência e Tecnologia (Grant SFRH/BD/81682/2011).info:eu-repo/semantics/publishedVersio

    G1P[8] species A rotavirus over 27years – Pre- and post-vaccination eras – in Brazil: Full genomic constellation analysis and no evidence for selection pressure by Rotarix® vaccine

    Get PDF
    AbstractEpidemiological data on species A rotavirus (RVA) infections have demonstrated the genetic diversity of strains circulating worldwide. Many G and P genotype combinations have been described over the years, varying regionally and temporally, especially in developing countries. However, the most common G and P genotype combinations identified in RVA human strains worldwide are G1P[8], G2P[4], G3P[8], G4P[8] and G9P[8]. RVA genotype G1P[8] strains are responsible for more than 50% of child infections worldwide and component of the two vaccines (Rotarix® [RV1] and RotaTeq® [RV5]) licensed globally. For a better understanding of the evolutionary mechanisms of this genotype in Brazil, phylogenetic analyses based on the 11 RVA genome segments (genomic constellation) from 90 G1P[8] RVA strains collected in two eras – (i) pre-vaccination with RV1 (1996–February 2006); (ii) post-vaccination (March 2006–2013) – in different Brazilian states were performed. The results showed the Wa-like genomic constellation of the Brazilian G1P[8] strains with a I1-R1-C1-M1-A1-N1-T1-E1-H1 specificity, except for two strains (rj14055-07 and ba19030-10) that belong to a I1-R1-C1-M1-A1-N1-T3-E1-H1 genomic constellation, evidencing the occurrence of reassortment (Wa-like×AU-1-like) of the NSP3 gene. Reassortment events were also demonstrated between Brazilian G1P[8] strains and the RV1 vaccine strain in some genes in vaccinated and unvaccinated children. VP7 and VP8* antigenic site analysis showed that the amino acid substitutions observed in samples collected after the introduction of RV1 in Brazil were already detected in samples collected in the 1980s and 1990s, suggesting that mass Brazilian RV1 vaccination had no impact on the diversity observed inside antigenic sites for these two proteins

    The evolving epidemiology of rotavirus A infection in Brazil a decade after the introduction of universal vaccination with Rotarix®

    No full text
    Abstract Background Brazil introduced the monovalent rotavirus vaccine (Rotarix®) in 2006. This study aimed to assess the epidemiology and genotype distribution of species-A rotavirus (RVA) in Brazil, comparing the pre- and post-vaccination periods. Methods Laboratory-based RVA surveillance included 866 municipalities in 22 Brazilian states, over a 21-year period. A total of 16,185 children with diarrheal diseases (DD) aged up to 12 years between 1996 and 2005 (pre-vaccination period, n = 7030) and from 2006 to 2017 (post-vaccination period, n = 9155) were enrolled. RVA was detected using ELISA immune assay and/or polyacrylamide gel electrophoresis and genotyped using nested PCR and/or nucleotide sequencing. RVA-positivity and genotypes detection rates were compared in distinct periods and age groups and Rotarix vaccination status. Results RVA-positivity in pre- and post-vaccination periods was, respectively: 4–11 months bracket, 33.3% (668/2006) and 16.3% (415/2547) (p <  0.001); 12–24 months, 28.2% (607/2154) and 22.2% (680/3068) (p <  0.001); 25–48 months, 17.4% (215/1235) and 29.4% (505/1720) (p <  0.001). Genotypes distribution in the pre- and post-vaccination periods was, respectively: G1P [8]/G1P[Not Typed], 417/855 (48.8%) and 118/1835 (6.4%) (p <  0.001); G2P [4]/G2P[NT], 47/855 (5.5%) and 838/1835 (45.7%) (p <  0.001); G3P [8]/G3P[NT], 55/855 (6.4%) and 253/1835 (13.8%) (p <  0.001); G9P [8]/G9P[NT], 238/855 (27.8%) and 152/1835 (8.3%) (p <  0.001); G12P [8]/G129P[NT], 0/871 (0%) and 249/1835(13.6%) (p <  0.001). Concerning infants aged 4–11 months, RVA frequency in fully vaccinated and non-vaccinated individuals was 11.9% (125/1052) and 24.5% (58/237) (p <  0.001), respectively. In children aged 12–24 months, RVA detection rate was 18.1% (253/1395) and 29.6% (77/260) (p <  0.001), for the vaccinated and non-vaccinated individuals, respectively (p <  0.001). Conclusions RVA infection was significantly less frequent in children aged ≤2 years with DD after implementing vaccination, mainly among vaccinated children. It was also observed a decrease of P [8] circulation and emergence of G2P[4] in 2005, and afterwards in the post-vaccine era, with spreading of G12P[8] in 2014–2015 and of G3P[8] in 2017. Continuous RVA surveillance must be carried out in this scenario

    Prevalence and genomic characterization of G2P[4] group A rotavirus strains during monovalent vaccine introduction in Brazil

    No full text
    This study aims to: estimate the prevalence of G2P[4] rotaviruses in Brazil between 2001-2011 from patients with acute gastroenteritis; perform phylogenetic analyses of G2P[4] Brazilian strains (from vaccinated and non-vaccinated children) based on VP7 and VP8(∗) encoding genes and analyze the antigenic regions of these proteins comparing with RV1; and assess the full genetic background of eleven selected Brazilian strains. The G2P[4] detection rate among RVA positive samples was 0/157 in 2001, 3/226 (1.3%) in 2002, 0/514 in 2003, 0/651 in 2004, 31/344 (9%)/2005, 112/227 (49%)/2006, 139/211 (66%)/2007, 240/284 (85%)/2008, 66/176 (37.5%)/2009, 367/422 (87%)/2010 and 75/149 (50%)/2011. For the VP7 and VP8(∗) encoding genes, 52 sequences were analyzed and shared up to 99% nucleotide identity with other contemporary G2P[4] strains detected worldwide, grouping into different clusters. Most differences inside antigenic epitopes of VP7 and VP8(∗) have been maintained in the G2P[4] Brazilian strains along the years, and all were present before RV1 introduction. Eleven G2P[4] strains (4-vaccinated/7-non-vaccinated) were completely characterized and possessed the typical DS-1-like genotype constellation (G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2) sharing up to 99% of nucleotide identity with contemporary worldwide strains. Reassortments between Brazilian G2P[4] human strains were observed. In conclusion, the data obtained in the current study suggests that implementation of RV1 vaccination might not influence the genetic diversity observed in G2P[4] analyzed strains. Several factors might have contributed to the increased prevalence of this genotype in Brazil since 2005: the introduction of RV1 into the Brazilian National Immunization Program has resulted in a decrease in the relative prevalence of predominant Wa-like RVA strains facilitating the increase of the heterotypic (DS-1-like) RVA strain G2P[4] in the Brazilian population; the genetic diversity found in different geographical regions throughout the years before, and after the introduction of RV1; the long period of low or no circulation of this genotype in Brazil previous to RV1 introduction could have created favorable conditions for the accumulation of immunological susceptible individuals.publisher: Elsevier articletitle: Prevalence and genomic characterization of G2P[4] group A rotavirus strains during monovalent vaccine introduction in Brazil journaltitle: Infection, Genetics and Evolution articlelink: http://dx.doi.org/10.1016/j.meegid.2014.09.012 content_type: article copyright: Copyright © 2014 Elsevier B.V.status: publishe

    Prevalence and genomic characterization of G2P[4] group A rotavirus strains during monovalent vaccine introduction in Brazil

    Get PDF
    Made available in DSpace on 2015-06-12T13:57:51Z (GMT). No. of bitstreams: 2 license.txt: 1914 bytes, checksum: 7d48279ffeed55da8dfe2f8e81f3b81f (MD5) tatiana_roseetal_IOC_2014.pdf: 862520 bytes, checksum: 3124bc7c8df41b90c55fc26589eb62cf (MD5) Previous issue date: 2014Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Virologia Comparada e Ambiental. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Virologia Comparada e Ambiental. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Virologia Comparada e Ambiental. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Virologia Comparada e Ambiental. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Virologia Comparada e Ambiental. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Virologia Comparada e Ambiental. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Virologia Comparada e Ambiental. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Virologia Comparada e Ambiental. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Virologia Comparada e Ambiental. Rio de Janeiro, RJ, Brasil.University of Leuven. Rega Institute for Medical Research. Department of Microbiology and Immunology.Laboratory of Clinical and Epidemiological Virology. Leuven, Belgium.University of Leuven. Rega Institute for Medical Research. Department of Microbiology and Immunology.Laboratory of Clinical and Epidemiological Virology. Leuven, Belgium.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Virologia Comparada e Ambiental. Rio de Janeiro, RJ, Brasil.This study aims to: estimate the prevalence of G2P[4] rotaviruses in Brazil between 2001–2011 from patients with acute gastroenteritis; perform phylogenetic analyses of G2P[4] Brazilian strains (from vaccinated and non-vaccinated children) based on VP7 and VP8⁄ encoding genes and analyze the antigenic regions of these proteins comparing with RV1; and assess the full genetic background of eleven selected Brazilian strains. The G2P[4] detection rate among RVA positive samples was 0/157 in 2001, 3/226 (1.3%) in 2002, 0/514 in 2003, 0/651 in 2004, 31/344 (9%)/2005, 112/227 (49%)/2006, 139/211 (66%)/2007, 240/ 284 (85%)/2008, 66/176 (37.5%)/2009, 367/422 (87%)/2010 and 75/149 (50%)/2011. For the VP7 and VP8⁄ encoding genes, 52 sequences were analyzed and shared up to 99% nucleotide identity with other contemporary G2P[4] strains detected worldwide, grouping into different clusters. Most differences inside antigenic epitopes of VP7 and VP8⁄ have been maintained in the G2P[4] Brazilian strains along the years, and all were present before RV1 introduction. Eleven G2P[4] strains (4-vaccinated/7-non-vaccinated) were completely characterized and possessed the typical DS-1-like genotype constellation (G2-P[4]-I2- R2-C2-M2-A2-N2-T2-E2-H2) sharing up to 99% of nucleotide identity with contemporary worldwide strains. Reassortments between Brazilian G2P[4] human strains were observed. In conclusion, the data obtained in the current study suggests that implementation of RV1 vaccination might not influence the genetic diversity observed in G2P[4] analyzed strains. Several factors might have contributed to the increased prevalence of this genotype in Brazil since 2005: the introduction of RV1 into the Brazilian National Immunization Program has resulted in a decrease in the relative prevalence of predominant Wa-like RVA strains facilitating the increase of the heterotypic (DS-1-like) RVA strain G2P[4] in the Brazilian population; the genetic diversity found in different geographical regions throughout the years before, and after the introduction of RV1; the long period of low or no circulation of this genotype in Brazil previous to RV1 introduction could have created favorable conditions for the accumulation of immunological susceptible individuals
    corecore